
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 10 October 2022

Markus Püschel, David Steurer

François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 3 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 17 October 2022.

Exercises/questions marked by
∗

are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 3.1 Some properties of O-Notation.

Let f : R+ → R+
and g : R+ → R+

.

(a) Show that if f ≤ O(g), then f2 ≤ O(g2).

(b) Does f ≤ O(g) imply 2f 6≤ O(2g)? Prove it or provide a counterexample.

Exercise 3.2 Substring counting (1 point).

Given a n-bit bitstring S (an array over {0, 1} of size n), and an integer k ≥ 0, we would like to count

the number of nonempty substrings of S with exactly k ones. For example, when S = “0110” and

k = 2, there are 4 such substrings: “011”, “11”, “110”, and “0110”.

(a) Design a “naive” algorithm that solves this problem with a runtime of O(n3). Justify its runtime

and correctness.

(b) We say that a bitstring S′ is a (non-empty) pre�x of a bitstring S if S′ is of the form S[0..i] where

0 ≤ i < length(S). For example, the pre�xes of S = “0110” are “0”, “01”, “011” and “0110”.

Given a n-bit bitstring S, we would like to compute a table T indexed by 0..n such that for all i,
T [i] contains the number of pre�xes of S with exactly i ones.

For example, for S = “0110”, the desired table is T = [1, 1, 2, 0, 0], since, of the 4 pre�xes of S, 1

pre�x contains zero “1”, 1 pre�x contains one “1”, 2 pre�xes contain two “1”, and 0 pre�x contains

three “1” or four “1”.

Describe an algorithm prefixtable that computes T from S in time O(n), assuming S has size n.

Remark: �is algorithm can also be applied on a reversed bitstring to compute the same table for

all su�xes of S. In the following, you can assume an algorithm suffixtable that does exactly this.

(c) Let S be a n-bit bitstring. Consider an integer m ∈ {0, . . . , n− 1}, and divide bitstring S into two

substrings S[0..m] and S[m+1..n−1]. Using prefixtable and suffixtable, describe an algorithm

spanning(m, k, S) that returns the number of substrings S[i..j] of S that have exactly k ones and

such that i ≤ m < j. What is its complexity?

For example, if S = “0110”, k = 2, and m = 0, there exist exactly two such strings: “011” and

“0110”. Hence, spanning(m, k, S) = 2.



Hint: Each substring S[i..j] with i ≤ m < j can be obtained by concatenating a string S[i..m] that
is a su�x of S[0..m] and a string S[m + 1..j] that is a pre�x of S[m + 1..n− 1].

*(d) Using spanning, design an algorithm with a runtime of at most O(n log n) that counts the number

of nonempty substrings of a n-bit bitstring S with exactly k ones. (You can assume that n is a power

of two.)

Hint: Use the recursive idea from the lecture.

Exercise 3.3 Counting function calls in loops (1 point).

For each of the following code snippets, compute the number of calls to f as a function of n. Provide

both the exact number of calls and a maximally simpli�ed, tight asymptotic bound in big-O notation.

Algorithm 1
(a) f()

i← 0
while i ≤ n do

f()
i← i + 1

Algorithm 2
(b) i← 0

while i2 ≤ n do
f()
f()
for j ← 1, . . . , n do

f()

i← i + 1

Exercise 3.4 Fibonacci Revisited (1 point).

In this exercise we continue playing with the Fibonacci sequence.

(a) Write an O(n) algorithm that computes the nth Fibonacci number. As a reminder, Fibonacci num-

bers are a sequence de�ned as f0 = 0, f1 = 1, and fn+2 = fn+1 + fn for all integers n ≥ 0.

Remark: As shown in the last week’s exercise sheet, fn grows exponentially (e.g., at least as fast as
Ω(1.5n)). On a physical computer, working with these numbers o�en causes over�ow issues as they
exceed variables’ value limits. However, for this exercise, you can freely ignore any such issue and
assume we can safely do arithmetic on these numbers.

(b) Given an integer k ≥ 2, design an algorithm that computes the largest Fibonacci number fn such

that fn ≤ k. �e algorithm should have complexity O(log k). Prove this.

Remark: Typically we express runtime in terms of the size of the input n. In this exercise, the runtime
will be expressed in terms of the input value k.

Hint: Use the bound proved in 2.2.(b).

2



*(c) Given an integer k ≥ 2, consider the following algorithm:

Algorithm 3
while k > 0 do

�nd the largest n such that fn ≤ k
k ← k − fn

Prove that the loop body is executed at most O(log k) times.

Hint: First, prove that fn−1 ≥ 1
2 · fn for all n.

Exercise 3.5 Iterative squaring.

In this exercise you are going to develop an algorithm to compute powers an, with a ∈ Z and n ∈
N, e�ciently. For this exercise, we will treat multiplication of two integers as a single elementary

operation, i.e., for a, b ∈ Z you can compute a · b using one operation.

(a) Assume that n is even, and that you already know an algorithm An/2(a) that e�ciently computes

an/2, i.e., An/2(a) = an/2. Given the algorithm An/2, design an e�cient algorithm An(a) that

computes an.

(b) Let n = 2k, for k ∈ N0. Find an algorithm that computes an e�ciently. Describe your algorithm

using pseudo-code.

(c) Determine the number of elementary operations (i.e., integer multiplications) required by your

algorithm for part b) in O-notation. You may assume that bookkeeping operations don’t cost any-

thing. �is includes handling of counters, computing n/2 from n, etc.

(d) Let Power(a, n) denote your algorithm for the computation of an from part b). Prove the correctness

of your algorithm via mathematical induction for all n ∈ N that are powers of two.

In other words: show that Power(a, n) = an for all n ∈ N of the form n = 2k for some k ∈ N0.

*(e) Design an algorithm that can compute an for a general n ∈ N, i.e., n does not need to be a power

of two.

Hint: Generalize the idea from part a) to the case where n is odd, i.e., there exists k ∈ N such that
n = 2k + 1.

3


